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Abstract

Additive manufacturing is one of the most promising emerging technologies for building prosthetic sockets. However, there is no

reliable way to estimate the factor of safety and the lifetime of 3D printed prosthetic sockets. Here, we explore 360° 3D digital

image correlation (DIC) and discover how this new tool can increase our understanding of prosthetic structural failures. We

establish that this new technology can dramatically improve the prosthetic design cycle by identifying local strain concentrations

and by highlighting limitations in current simulated models. Overall, 360° 3D DIC technology empowers prosthetic engineers

to characterize the performance of new materials and create innovative designs that are both safe and affordable.
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Abstract:  

 

Additive manufacturing is one of the most promising emerging technologies for building 

prosthetic sockets. However, there is no reliable way to estimate the factor of safety and the 

lifetime of 3D printed prosthetic sockets. Here, we explore 360° 3D digital image correlation 

(DIC) and discover how this new tool can increase our understanding of prosthetic structural 

failures. We establish that this new technology can dramatically improve the prosthetic design 

cycle by identifying local strain concentrations and by highlighting limitations in current 

simulated models. Overall, 360° 3D DIC technology empowers prosthetic engineers to 

characterize the performance of new materials and create innovative designs that are both safe 

and affordable. 
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1. Introduction  

 

Every year in the United States, more than 185,000 people lose their limbs to trauma, 

infection, malignancy, diabetes or other conditions and this number is projected to keep 

growing [1]. Around the globe, approximately 40 million individuals are amputees and as many 

as 95% of them do not wear a prosthetic [2]. Amputees who do not wear a prosthetic suffer 

from limited mobility as well as limited access to education, employment, and financial support 

[3]. 3D printing has been identified as a breakthrough technology that can dramatically improve 

access to affordable prosthetic limbs [4]. It can be used to manufacture customized prosthetics 

faster and more affordably than traditional shaping methods (Figure 1). Unfortunately, 3D 

printed prosthetic sockets are not currently safe enough to use in clinical practice. No polymeric 

3D printed prosthetic socket to date has been sufficiently strong to comply with the loads 

specified by ISO 10328, the standard for structural testing of lower limb prosthetics [5]. For 

this reason, engineers need to understand how and why 3D printed sockets fail in order to 

improve their designs to the point where they can be utilized safely by amputees.  

 

2. Background  

 

2.1 Structural Analysis of Lower Limb Prosthetics 

  

Prosthetic sockets are a critical structural component in lower limb prosthetics; 

however, they have not been tested or simulated to the same extent as other prosthetic 

components. This stems from the fact that prosthetic sockets are omitted from ISO 10328. 

These prosthetic sockets do not have the degree of mechanical analysis that load bearing 

structures should have. However, previous research on the topic yielded valuable insights into 

how to conduct experiments and analyze the failure of these prosthetic sockets. This previous 

work is framed in terms of the typical engineering design cycle: Simulation → Experiment → 

Simulation.  

 

2.1.1 Prior Simulations 

 

 There are a significant number of simulations that seek to model the mechanical 

behavior of prosthetic sockets. Modeling prosthetic sockets is a challenge because it is a 

complex multi-body problem that involves interactions between multiple surfaces and 

materials with both linear elastic and viscoelastic behavior [6]. This has led to many different 

approaches for solving this complex simulation challenge dependent on some critical 

biomechanical assumptions. These simulations generally model this system to understand how 

a residual limb deforms in response to loading [6]. This perspective is limited because it does 

not evaluate the prosthetic sockets themselves for failure. However, the simulation parameters 

and boundary conditions can be modified to take this a step further for socket failure analysis. 

Simulations of prosthetic sockets begin with obtaining a sample geometry. The most 

common approach utilizes magnetic resonance imaging (MRI) scans to obtain the hard and soft 

tissue geometry of a residual limb for simulations [7-10]. Material properties in these 

simulations are commonly simplified to homogeneous isotropic linear elastic behavior. More 
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sophisticated models utilize hyperelastic or viscoelastic formulations of material behavior [6, 

7]. Loading and boundary conditions vary considerably based on the phase of the gait cycle. 

Most simulations utilize a pre-stress at a magnitude of 50 N. Standing yields static and vertical 

loading conditions while running or walking require ground reaction forces and moments [13, 

14]. Simulations of donning, the act of putting on a socket, do not require pre-stresses [15]. 

The magnitude of stresses simulated was most commonly 800 N which is approximately 110% 

of an ideal patient’s body weight [14-16]. In almost all cases of multibody simulations, the 

interface between the limb and socket was represented by a coefficient of friction (typically of 

value 0.5) [6, 7]. 

 

2.1.2 Prior Experiments 

 

 Failure in prosthetic sockets can be catastrophic. Amputees rely on sockets to maintain 

the link between their body and the prosthesis and they can be seriously injured in the event of 

failure. Therefore, engineers need to be able to verify and quantify the level of safety in 

prosthetic sockets. Simulations are useful tools for predicting these catastrophic events. 

However, because so many assumptions are made, experimental data is needed to validate these 

models. Despite the fact that ISO 10328 omits protocols for testing prosthetic sockets, several 

research teams have attempted to develop valid methods for testing the strength of these 

sockets. These tests are all inspired by ISO 10328 to specify the loading conditions for yield 

stress, ultimate strength, and fatigue strength of these sockets.  

 Current et al. [17] characterized the failure modes of composite prosthetic sockets in 

1999. They developed a custom socket loading fixture (SLF) which enabled them to apply 

loads to a prosthetic socket with a 100kN hydraulic load cell. They identified three primary 

failure modes for the prosthetic socket material:  inter-laminate shear, buckling, and tension. 

Significantly, they also noted that the prosthetic sockets failed near the pyramidal adapter. Most 

importantly, they noted that “none of the composite sockets in the study were able to meet the 

specified parameters set [by ISO 10328] for other prosthetic componentry.” 

Goh et al. [18] tested the mechanical strength of additively manufactured prosthetic 

sockets in 2002. They characterized the material properties of polypropylene sockets using 

ASTM D638 [19] and then tested for the strength of the prosthetic socket using ISO 10328 as 

a guideline. Both the static and cyclic (250,000 cycles) behavior was tested on prosthetic 

sockets in two loading configurations (standing and walking). The additively manufactured 

sockets failed catastrophically after the material reached its ultimate tensile strength. 

Gerschutz et al. [20] performed an extensive strength evaluation of prosthetic sockets 

in 2012 (which is still the most comprehensive analysis to date). They developed a custom 

apparatus to test the static compressive strength of prosthetic sockets using an instrumented 

load cell and a standardized limb shape. Following this, they tested sockets manufactured by 

different providers around the United States. Their experiments revealed that check sockets 

(prototype sockets typically used for fitting) and copolymer sockets failed to meet the loading 

conditions specified by ISO 10328. This is significant because prosthetic sockets fabricated 

with 3D printing are very similar in strength to these check sockets.  

 Skoglund [21] built a custom apparatus to test the mechanical strength of prosthetic 

sockets manufactured by selective laser sintering (SLS) in 2015. This new apparatus represents 
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a significant improvement; it can apply compressive loads in a more biomechanically accurate 

manner by utilizing multiple ball joints. This new design also enables prosthetic sockets to be 

tested without geometrical modification. Using this new apparatus, Skoglund [21] was able to 

design a titanium alloy prosthetic socket to satisfy the ISO 10328 loading conditions.  

 

2.2 Strain Characterization Advances 

 

To understand how prosthetic sockets deform and fail, the most important tools for 

characterizing failure are experimental strain techniques. Strain gauges have been the primary 

method of characterizing mechanical performance of prosthetic sockets. However, new 

techniques for strain characterization have the potential to significantly improve the quality 

and quantity of experimental data.  

 

2.2.1 Strain Gauges  

 

 Strain gauges have historically been the most frequently utilized tools for characterizing 

strain in prosthetics. Strain gauges work by outputting a voltage reading which changes over 

the course of an experiment; this voltage reading will decrease when a strain gauge undergoes 

extension because the resistance of the strain gauge increases. This technique has many 

advantages. Most importantly, it is relatively inexpensive and quantitative strain performance 

is very well documented. Strain gauges can be used on arbitrarily large structures as well as 

built into arrays to give information on the local strain field. Finally, strain gauges can be used 

in hollow structures to obtain interior strain information [22]. Disadvantages of strain gauges 

are that they fundamentally only give local uniaxial strain information, require perfect bonding 

for measurements, and can be complex to set up for large installations. These limitations have 

frustrated prosthetic researchers in the past who noted significant challenges in obtaining useful 

strain data [23]. 

 

2.2.2 Photoelasticity 

 

The photoelasticity technique is equally well established for strain characterization 

being utilized as far back as 1932 [24]. In photoelasticity, light waves pass through a material 

that exhibits birefringence behavior under stress. The indices of refraction change in the 

material based on the induced polarization and which shifts the wavelength of light passing 

through a material and creates different colors which are used to determine stress and strain. 

The main advantage of this technique is that it can visualize stress and strain over an entire 

surface (including 3D surfaces), which yields significantly more information about a structure 

as a whole [25]. However, the photoelastic technique has its own limitations. It requires a part 

be made of a birefringent material. Otherwise, a relatively thick (~3 mm) uniform photoelastic 

coating must be adhered to the surface, possibly leading to reinforcement issues. Additionally, 

it can be tedious to calculate values of principal stress since it requires expensive equipment 

that is time consuming for 3D work [25, 26]. These factors have made photoelasticity 

unsuitable for use in prosthetic research.  
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2.2.3 Digital Image Correlation 

 

 Digital image correlation (DIC) is a relatively new technique for strain characterization, 

dating back to 1985 [27]. DIC works by tracking the displacement of an image pixel block on 

the surface of a sample. Simply by tracking these pixels, a computer can construct deformation 

vector fields and strain maps in both 2D and 3D. DIC only requires that the samples surface 

exhibit a unique pattern that can be easily tracked [28]. One main advantage of DIC is that the 

numerical strain is calculated automatically during the analysis, saving a great deal of time 

compared to photoelasticity. DIC has the additional advantage of not requiring a specialized 

coating. Some disadvantages of the technique are that it has primarily been restricted to 2D 

analysis because most implemented DIC algorithms assume plane strain and stress conditions 

[29]. 3D analysis has been dramatically improving in recent years, but the majority of analyses 

utilize small surfaces generated from a single stereo camera pair [30, 31]. 360° DIC systems 

have been developed commercially such as by Dantec Dynamics; however these solutions are 

extremely expensive. Two recent papers by Solav et al. [32, 33] outlined a new method called 

MultiDIC to stitch together an arbitrary number of stereo camera pairs. This new method has 

the potential to take advantage of DIC’s strengths (low cost equipment and sample preparation) 

while eliminating its major weaknesses (limited 3D analysis).  These benefits make this new 

method a powerful tool for studying prosthetic design.  

 

3. Experimental and Computational Methods 

 

Based on our literature review of existing technologies for structural analysis, we 

determined that the MultiDIC technology developed by Solav et al. [33] was a promising tool 

to calculate the factor of safety in prosthetic socket designs. However, since that paper did not 

address failure analysis, we needed to determine if the tool was capable of characterizing 

structural failures. A validation study (outlined in Appendix A.1) was conducted which 

demonstrated that MultiDIC was an effective tool for structural failure analysis. Subsequent 

experiments were conducted to understand how prosthetic sockets fail in compression. In the 

first stage, a socket loading fixture was simulated using ABAQUS CAE. This simulation 

represents how current simulation model parameters predict the stress and strain distribution 

of prosthetic sockets. This computational work was followed by an experiment where a 3D 

printed polylactic acid (PLA) socket was compressed in the socket loading fixture until failure. 

This event was captured with a synchronized camera array. This analysis was limited to a single 

prosthetic socket to determine the viability of the 360º 3D DIC method. The MultiDIC software 

used the camera data to reconstruct a 360º strain map of a prosthetic socket. Finally, the 

simulated data was compared to the experimental data to understand the current limitations of 

existing structural analysis methods. 

 

3.1 Simulation 

 

ABAQUS CAE requires objects to be represented by a parametric CAD file before it 

can simulate their mechanical behavior. To create a parametric CAD file of an amputee’s limb, 

a geometry was generated using spline decomposition of a parent .STL file. This decomposition 
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method was used to generate parametric CAD files of all the socket loading fixture 

components.  Once all of the geometries were created, the CAD files were imported into 

ABAQUS CAE for analysis (Figure 2). 

 Dickinson et al. [6] presented several references where researchers assumed that the 

material behavior was homogeneous and isotropic when simulating prosthetic sockets. Based 

on previous assumptions [6], the following simulations also utilize homogenous and isotropic 

material properties (Table 1). The interaction between the socket and residual limb was defined 

as surface to surface with finite sliding. The behavior of the contact surface simulation was set 

as tangential with zero tolerance for adjustment. Additionally, a zero frictional penalty was 

defined resulting in rigid and perfect contact between simulated surfaces. 

 Both models for the residual limb and socket had a tetrahedral mesh geometry and a 

global seed size of 0.0075. The model components had 40405 and 13649 elements respectively 

which was sufficient to enable convergence of simulated results. To avoid convergence errors 

mentioned in previous work [8], the number of iterative attempts was increased from the default 

of 5. A load of 2240 N was applied to the top surface of the residual limb model under the 

assumption that the aluminum rod used was able to transfer loads perfectly. This force value is 

the structural proof strength as specified by ISO 10328. Finally, the flat plane at the bottom of 

the distal end of the socket was specified as a fixed boundary condition.   

 

3.2 Physical Experiment 

 

A physical experiment was conducted to characterize the full surface strain of a 3D 

printed prosthetic socket in pure compression using MultiDIC. Using the camera system built 

by Solav et al. [33] as inspiration, a synchronized camera system capable of capturing image 

data in a 360º field of view was built. Two rings of LED lights ensure that samples are evenly 

illuminated. 16 Raspberry Pi 3 B+ and cameras were arranged radially on an adjustable 

mounting system (Figure 3). All of the Raspberry Pi computers are connected on a local 

network via a network switch. A separate Raspberry Pi computer with a real time clock (RTC) 

module set the global time for the system using Network Time Protocol (NTP). A host PC 

initiates a Python script over Secure Shell Protocol (SSH) for capturing images at 1640x1232 

resolution and 1 frame per second (Appendix A.2). Figure 4 shows the network configuration. 

The same socket design was analyzed in both the simulations and physical experiment. 

A polylactic acid (PLA) test specimen utilizing 100% infill was manufactured by a Raise3d 

Pro 2 Plus FDM 3D printer. To prepare the socket for DIC analysis, the specimen’s surface 

was coated with white spray paint to which a speckle pattern was applied. Finally, a pyramidal 

adapter was attached to the base of the socket to allow for mounting into the socket loading 

fixture. 

This socket loading fixture, based on the Skoglund [21] design, uses two ball and socket 

joints to isolate the prosthetic socket specimen from bending moments when loaded in 

compression (Figure 5). The fixture applies a uniform load to the prosthetic socket through a 

replica of a patient’s limb cast in epoxy. An instrumented load cell (Instron 3367) transfers the 

load to the epoxy limb via an aluminum rod fixed centrally in the limb. The separate 

components of the apparatus connect to each other using standard prosthetic pyramidal 

adapters.   
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During the experiment, an instrumented load cell first applied a preload of 5 N to the 

socket specimen, then compressed this specimen at a quasistatic velocity of 0.11mm/s to a 

maximum extension of 45mm. The synchronized camera array captured images of the 

deformation for the MultiDIC analysis. The socket exhibited a structural failure during this 

loading cycle.  

 

4. Results and Discussion 

 

The simulated and experimental strain maps were plotted using ABAQUS CAE and the 

MultiDIC MATLAB toolbox. When compared, these two strain maps showed similar strain 

profiles (Figure 6). This agreement suggests that the multibody simulation model is able to 

accurately impose a loading condition similar to the real-world experiment. However, 

comparing the numerical data between the two profiles, the simulated strain is significantly 

smaller than the observed experimental strain (Figure 6) The maximum simulated strain was 

2.5*10-4 while the maximum experimental strain was 5.7*10-3, one order of magnitude higher. 

This difference implies that the homogeneous isotropic material properties assumed by many 

previous researchers are not sufficient to accurately characterize the structural behavior of 

prosthetic sockets. Thus, one way to improve simulated models is to determine the anisotropic 

material properties of printed specimens and incorporate this data into simulations. Following 

this result, the mechanical properties of the PLA specimens were measured using ASTM D638 

[19] and found to have a lower Young’s modulus and tensile strength than expected from the 

bulk material (Table 2). 

Interestingly, the ultimate failure and delamination of the socket occurred at the bottom 

of the distal end, even though the simulated model and the experimental model show the 

highest surface strain concentration in a different location (Figures 6 & 7). This discrepancy 

means that the true strain concentration that led to failure occurred on the inside of the socket. 

Figure 8 shows several small breaks before the large delamination event. These breaks could 

potentially be from the attachment screws destroying individual printed layers on the inside of 

the socket. The prosthetic socket specimen failed at 694.4 N which is lower than the 2240 N 

proof strength required by ISO 10328. Since the prosthetic socket failed at a low force under 

quasistatic loading conditions, it would not be capable of surviving the 1330 N cyclic loading 

requirement. Based on this observation, a new boundary condition for the distal end attachment 

should be utilized to identify interior stress concentrations. Clearly, there are both structural 

and material deficiencies that need to be addressed in 3D printed prosthetic sockets.  

One limitation of the 360º 3D strain analysis is that the surfaces did not perfectly align 

during reconstruction (Figure 9). This could be due to the prosthetic socket being positioned 

off the central axis whereas the calibration object was positioned in the center of the camera 

array. The calibration object was slightly smaller than the prosthetic socket, but this should not 

have had any effect on calculating camera parameters because the calibration object was 

equally within the field of view of all cameras. It is important to note that while changing these 

factors can improve the quality of the visualization, the quantitative strain values will remain 

unchanged. Engineers can utilize this quantitative strain data to make design adjustments to 

improve the safety and mechanical performance of prosthetic sockets. Overall, 360° 3D DIC 

improves the testing phase of the prosthetic socket design cycle by precisely identifying 
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limitations in assumptions for simulated models and by generating full field quantitative strain 

maps to highlight local strain concentrations.   

 

5. Conclusions and Future Work 

 

5.1 Conclusions 

  

This research offers several significant advances to the field of prosthetics. A 

synchronized 360⁰  camera array was built to record deformations on the surface of a prosthetic 

socket under compressive loading. Using MultiDIC and this camera data, a full field 360⁰  

strain map was reconstructed on a prosthetic socket specimen. These experimental strain maps 

are useful because they pinpoint specific strain concentrations on a sample. However, their 

greatest strength comes from comparisons with simulated strain maps. The prosthetic socket 

specimen was simulated using homogeneous isotropic material properties. Comparisons 

between the simulated strain data and the experimental strain data indicate that these 

assumptions are not sufficient to calculate an accurate numerical strain value. This insight 

would not have been possible without this new strain characterization technology. In 

conclusion, 360° 3D DIC enables engineers to have a clearer view of how an entire mechanical 

system performs. This technology allows them to make a distinction between failures due to 

material properties and failures due to structural design. 360⁰  3D DIC is useful for the field of 

prosthetics research and will empower engineers to create stronger, lighter, and safer designs.  

 

5.2 Future Work 

 

One limitation of the work reported herein is that the experimental socket model only 

accounts for a quasistatic loading condition. This stands in contrast with the dynamic nature of 

the human gait cycle. In addition, the model only accounts for failures under compressive 

loading conditions and does not account for failures due to bending or fatigue. Future research 

is needed to test prosthetic sockets under dynamic loading conditions and long term fatigue 

conditions. Additionally, future simulations must incorporate anisotropic material properties. 

Significant computational resources will be needed to visualize the dynamic experimental and 

simulation results. In future studies, 360° 3D DIC will be a critical tool to create accurate 

simulations and achieve a greater understanding of these complex mechanical systems. 

Ultimately, this technology will guide prosthetic safety research by allowing engineers to find 

innovative materials and improve the quality of all prosthetic designs.  
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FIGURES 

 

 

 
 

Figure 1: Two lower limb (trans-tibial) prosthetics manufactured using traditional shaping 

methods. a) The socket on the left is made of a laminated carbon fiber composite which is 

expensive but common in developed nations. b) The socket on the right is manufactured at a 

low cost out of high density polyethylene (HDPE) by Jaipur Foot in India   
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Figure 2: Example of residual limb geometry transformed into a parametric CAD using 

splines. This geometry was then meshed for the simulations in ABAQUS CAE. 
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Table 1: Table displaying material properties utilized in the simulations 

 

Material Density (kg/m3) Young’s Modulus (GPa) Poisson’s Ratio 

Aluminum (6061) [34] 2700 68.9  0.33 

PLA [35] 1200 2.636 0.36 

EpoxACastTM 655 [36] 
1660 14.1 0.3* (Approx) 
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Figure 3: 360° Synchronized Camera Array. This camera system consists of 16 Raspberry Pi 

computers and PiCamera v2 modules connected in a local network. These computers are time 

synchronized via a Raspberry Pi acting as an NTP server.  
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Figure 4. Network diagram showing the design of synchronized camera array. In this figure, 

the host PC interacts over SSH to control a network of Raspberry Pi computers and PiCameras, 

while the network is synchronized by the NTP server. 
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Figure 5: Image showing the experimental setup for testing prosthetic sockets in compression. 

This socket loading fixture is surrounded by our 360° synchronized camera array to facilitate 

3D digital image correlation analysis. 
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Figure 6: Image showing a comparison between experimentally generated strain maps and 

simulated strain maps. These two graphics show great agreement as to the strain distribution, 

but the simulated strain is much smaller than the experimental strain.  
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Table 2: Table showing the bulk material PLA properties versus properties of the printed 

materials. The prosthetic socket test specimen was printed in the horizontal orientation. These 

results were obtained using ASTM D638. 

 

 

Material Properties Young’s Modulus GPa Tensile Strength MPa 

Bulk from Literature [35] 2.64 ± 0.33  46.6 ± 1.2  

Vertical Print Orientation 2.11 ± 0.11  47.5 ± 1.2  

Horizontal Print Orientation 1.95 ± 0.06 22.1 ± 1.0 

 

 

 

 

 

 

  



 22 

 

 
 

Figure 7: Image showing the delamination failure at the distal end of the tested prosthetic 

socket. Although both the simulation and the experiment observed high strain in a different 

region, the socket delaminated completely at the distal end indicating there was an internal 

stress concentration due to the attachment mechanism. 
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Figure 8: Graph displaying the load-displacement curve from the Instron. The prosthetic 

socket failed at 694.4 N which is much less than the 2240 N proof strength specified by ISO 

10328. 
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Figure 9: Image showing reconstructed 360° 3D geometry. While the surfaces do not perfectly 

align into the original shape, the numerical strain values are valid.  
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Appendix 

 

A.1 Validation of MultiDIC Method for Failure Analysis 

 

From our literature search, we found that there were many underutilized technologies 

that would be incredibly useful for characterizing the failure mechanisms of prosthetic sockets. 

Specifically, we determined that the MultiDIC technology developed by Solav et al. [33]  

would be the most groundbreaking for structural failure analysis of complex 3D objects. 

However, this paper did not include analysis of deformation and failure in an instrumented load 

cell. Because of this limitation, we needed to run our own validation study to determine whether 

MultiDIC could be utilized for structural failure analysis. In our validation study, we chose to 

characterize the torsional failure mode of balsa wood utilizing a 180° camera setup. This work 

was important because MultiDIC needed to be able to characterize known failure mechanisms 

in order to be used as a tool for critical safety analyses of prosthetics.  

 

A.1.1  Design of 180⁰  Synchronized Camera Array 

 

Drawing inspiration from Solav et al. [33] we built a synchronized compact 180° 

camera array designed to capture photos in a torsional testing configuration. This array is built 

on a semicircular frame that is designed to be adjustable to accommodate for different sample 

heights. On the frame, six Raspberry Pi 3 Model B+ computers, each equipped with camera 

module v2’s, are equally spaced 30° apart. These Raspberry Pi’s are routed together via a local 

network switch and time synchronized using another Raspberry Pi 3 Model B+ computer 

functioning as a Network Time Protocol (NTP) server. All Raspberry Pi machines are 

controlled remotely using a host PC communicating with the local network (Figure 4). This 

host PC controls a Python script that initiates the image capture program (See Appendix A.2). 

With this script, we capture synchronized images at 1640x1232 resolution and 1 frame per 

second. The main advantages of this system is that it is low cost (~$500 for 6 cameras) and is 

scalable (up to 48 cameras on a single switch.) 

 

A.1.2 Testing Known Failure Mechanism: Torsion 

 

Wood structures can fail reliably when loaded in torsion. Chen et al. [37] investigated 

the fracture of wood under torsional loading extensively and determined that cylindrical wood 

samples consistently generate longitudinal cracks when the wood grain is parallel to the twist 

axis. This meant that wood was an excellent candidate material to consistently generate 

longitudinal cracks. 

To test the torsional configuration, the camera array needed to be calibrated for the 

specific camera geometry. We utilized a precision machined calibration object with known 

dimensions to determine the camera locations in relative space (Figure A1) In addition, we 

corrected for camera lens distortion as recommended by Solav et al. [33].  

We prepared cylindrical balsa wood samples 70 mm in length, and 32 mm in diameter 

for torsional analysis and loaded it into a custom torsional load cell built by Porter et al.  [38]. 
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The sample was twisted at a rate of 0.002 radian/s and we ran our experiment until we reached 

1 radian of extension. This was sufficient to consistently generate cracks. 

 

A.1.3 Results and Implications for Prosthetic Research  

 

Once we finished the torsional experiment, we visualized the strain results using the 

MultiDIC toolbox developed by Solav et al. [33]. This required that we calculate lens 

distortion, calibrate our camera positions, calculate the 2D DIC maps for each stereo camera 

pair, reconstruct our 3D surface geometry, before we could project these strain maps onto the 

3D surface. We evaluated the torsional specimen from its zero deformation state until right 

before failure. We were able to successfully visualize the results on an entire 180° surface; 

these are presented in Figure A2.  

In Figure A2, we can clearly see that a crack propagated longitudinally across the 

sample. This behavior was entirely expected based off of the work by Chen et al. [37]. Looking 

at the principal strain map, we can observe that the MultiDIC system was able to keep track of 

the surface strain over the entire testing period. The system is able to show the strain 

concentration leading to the crack. This means that we were able to successfully observe strain 

concentrations in the sample even before they presented themselves as macroscopic cracks.  

Overall, this validation was a success and we were able to visualize the strain field on 

the surface of an object in torsion utilizing multiple stereo camera pairs. This allowed us to 

capture the failure mechanism in our torsionally loaded balsa wood samples. Our system is 

extremely useful in observing strain concentrations on complex structures and can show us 

exactly where a structure will fail. This in turn tells us where a structure can be redesigned to 

increase safety. Since we were able to successfully characterize a structural failure mechanism 

using an instrumented load cell and the MultiDIC toolbox, we were confident to continue our 

work and begin to characterize the failure mechanisms of a prosthetic socket.  
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Figure A1:  Image showing the assembled 180° synchronized camera array with a precision 

machined calibration object. This camera array is designed to analyze torsional failure modes 

in materials.  
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Figure A2: Image showing the (a) failed torsional specimen, (b) reconstructed 3D geometry, 

(c) successfully reconstructed 180° 3D strain map. 
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A.2 Python Image Capturing Program 

 

Environment: Python 2.7 

 

import time 

import numpy as np 

import os  

from datetime import datetime, timedelta 

from picamera import PiCamera 

from time import sleep 

import socket 

import math 

 

# INSTRUCTIONS 

 

#       THIS CODE INTENDED TO BE USED THROUGH SECURECRT 

#       WHEN SENDING COMMANDS THROUGH TERMINAL TO ALL SESSIONS: 

#               NEED TO MAP A KEY TO EMULATE KEYBOARD INTERRUPT IN SESSION 

OPTIONS IN ORDER TO END CAPTURE SIMULTANEOUSLY 

#               BASICALLY JUST TEDIOUS OTHERWISE GOING INTO EVERY COMMAND 

LINE AND HITTING CRL+C 

#               ON MAC THIS CAN BE DONE USING CRL+SHIFT+C MAPPING TO "\007" 

#               YOU'LL NEED TO DO THIS FOR EVERY SESSION/PI 

#               AFTER DOING THIS FOR EVERY SESSION HITTING THAT COMBINATION 

WILL WRITE WHAT LOOKS LIKE A SPACE 

#               HIT ENTER AND THE CAPTURE SHOULD END ON ALL OF THEM 

 

 

camera = PiCamera() 

 

#GETTING USER INPUT FOR RESOLUTION: 1 FOR FULL RES, 2 FOR HALF RES.  

 

print "\nPlease enter resolution selection and hit enter: " 

res = raw_input("Full resolution: 1. Half res: 2 \n") 

try: 

        res = int(float(res)) 

except: 

        res = 3 

restag = " " 

if res == int(1): 

        camera.resolution = (3280, 2464) 

        restag = "Full" 

        print "Capturing at Full resolution." 

elif res == int(2): 
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        camera.resolution = (1640, 1232) 

        restag = "Half" 

        print "Capturing at Half resolution." 

else: 

        print "invalid, defaulting to Half resolution" 

        camera.resolution = (1640, 1232) 

        restag = "Half" 

 

#GETTING SECONDS PER FRAME 

spf = 1 

 

#       print "\n[NOTE: SPF > 5 is more stable. Minimum SPF of 1 (default)]" 

#       spf = raw_input("Enter the capture delay (seconds per frame), ex: 5 = 0.2fps: \n") 

#       try: 

#               spf = int(round(float(spf))) 

#       except: 

#               print "That is not a number but let's do this anyway" 

#               spf = 1 

#       if spf < 1: 

#               spf = 1 

#       elif spf > 60: 

#               print "Are you sure you want over a 1 minute delay between captures?" 

#              sure = raw_input("Type ""y"" if yes, anything else for no:") 

#               if sure == "y": 

#                       print "Well ok then..." 

#               else: 

#                       print "That's what I thought" 

 

#       print "Your SPF is: " + str(spf) 

 

#       CREATE DIRECTORY NAME 

today = datetime.today() 

todaystr = today.isoformat () 

todaystr = todaystr[0:16] 

 

todaylist = list(todaystr) 

todaylist[10] = '_' 

todaylist[13] = '_' 

todaystr = "".join(todaylist) 

 

pi_label = socket.gethostname() 

 

path = "/home/pi/Desktop/" + todaystr + "_" + pi_label + "/" 
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#       CREATE DIRECTORY 

try: 

        original_umask = os.umask(0) 

        os.makedirs(path, 0777) 

except OSError: 

        print ("Creation of the directory %s failed" % path) 

else: 

        print ("Successfully created the directory %s" % path) 

finally: 

        os.umask(original_umask) 

 

#       CREATE INFO TEXT DOCUMENT 

error_record = open(path + todaystr + "_" + pi_label + "_" + "experiment_info.txt","w+") 

 

error_record.write(todaystr + pi_label +"\n") 

error_record.write("Resolution: " + restag + "\n") 

error_record.write("Seconds per Frame: " + str(spf) + "\n") 

 

#        loop timing data analysis 

testtime = [] 

tt1 = 0 

tt2 = 0 

 

#       setting variables keeping time for sleeping, naming, and errors 

 

precapturetime = 0 

postcapturetime = 0 

post_errorcapturetime = 0 

post_errortime = 0 

 

timeforsleep = 0 

ctime = 0 #capture time 

errorctime = 0 #error capture time 

capturetime = [] #list of capture times 

#post_error_naming_adjust = 0 #name is self explanatory 

#secondcapture = 0 #will be post_errorcapturetime - postcapturetime 

 

print "Starting capture in:"  #This is here because we need to sleep >2 seconds to let camera 

warm up 

print "3..." 

sleep(1) 

print "2..." 

sleep(1) 

print "1..." 
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sleep(1) 

print "Starting Capture." 

 

#MAIN CAPTURING LOOP, BREAK WITH CTRL + C (MUST CREATE KEY MAPPING 

IN EACH SESSION IN SECURE CRT WITH CTRL + SHIFT + C ON MAC TO END 

PROGRAM FROM COMMAND WINDOW) 

try: 

        tt1 = time.time() 

        i = 1 

        while True: 

                 

                precapturetime = time.time() 

                camera.capture("%simage_%04d.jpg" % (path,i)) 

                postcapturetime = time.time() 

                 

                ctime = postcapturetime-precapturetime 

                timeforsleep = float(spf) - (ctime) 

                capturetime.append(ctime) 

 

                if timeforsleep < 0: 

                         

                        error_record.write("took " + str(timeforsleep) + " sec over " + str(spf) + " second 

to capture image at frame: " + str(i) +"\n") 

                        print "..." 

                         

                        post_errortime = time.time 

                         

                        errorctime = post_errortime-precapturetime 

                        timeforsleep = math.ceil(errorctime) - errorctime 

 

                        sleep (timeforsleep) 

 

                        i = i + int(math.ceil(errorctime)) # spf must be 1, use modulus with spf to get 

back to proper synchronous with SPF adjustments 

                         

                        #secondcapture = post_errorcapturetime - postcapturetime 

                         

                        #post_error_naming_adjust = int(math.ceil(errorctime)) 

                         

                        #camera.capture("%simage_%04d.jpg" % (path,i) 

#+post_error_naming_adjust 

                                        

                        #post_errorcapturetime = time.time() 
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                        #capturetime.append(post_errorcapturetime-posterrortime) #log capture time 

directly after error capture time 

 

                         

 

                        #i = i + int(math.ceil(errorctime)) #- spf 

 

                        #if secondcapture > spf: 

                        #        error_record.write("took " + str(secondcapture) + " sec over " + str(spf) + 

" second to capture image at frame: " + str(i) +"\n") 

 

                else: 

                        i = i + spf 

                        sleep(timeforsleep) 

                         

                tt2 = tt1 

                tt1 = time.time() 

                testtime.append(tt1-tt2) 

 

except KeyboardInterrupt: 

        pass 

 

error_record.write("average loop time: " +str(np.average(testtime)) + "\n") 

error_record.write("stdev loop time: " + str(np.std(testtime)) + "\n") 

error_record.write("average capture time: " + str(np.average(capturetime)) + "\n") 

error_record.write("stdev capture time: " + str(np.std(capturetime)) + "\n") 

 

error_record.write("capture times: \n") 

 

for x in capturetime: 

        error_record.write(str(x)+"\n") 

 

camera.close() 

error_record.close() 
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